If $f\left( x \right) = {\log _e}\,\left( {\frac{{1 - x}}{{1 + x}}} \right)$, $\left| x \right| < 1$, then $f\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$ is equal to

  • [JEE MAIN 2019]
  • A

    $2f\left( x \right)$

  • B

    ${\left( {f\left( x \right)} \right)^2}$

  • C

    $2f\left( x^2 \right)$

  • D

    $ - 2f\left( x \right)$

Similar Questions

Range of the function $f(x) = {\sin ^2}({x^4}) + {\cos ^2}({x^4})$ is

Let $c, k \in R$. If $f(x)=(c+1) x^{2}+\left(1-c^{2}\right) x+2 k$ and $f(x+y)=f(x)+f(y)-x y$, for all $x, y \in R$, then the value of $|2( f (1)+ f (2)+ f (3)+\ldots \ldots+ f (20)) \mid$ is equal to

  • [JEE MAIN 2022]

The range of the function $f(x){ = ^{7 - x}}{\kern 1pt} {P_{x - 3}}$ is

  • [AIEEE 2004]

Suppose $f$ is a function satisfying $f ( x + y )= f ( x )+ f ( y )$ for all $x , y \in N$ and $f (1)=\frac{1}{5}$. If $\sum \limits_{n=1}^m \frac{f(n)}{n(n+1)(n+2)}=\frac{1}{12}$, then $m$ is equal to $...............$.

  • [JEE MAIN 2023]

Domain of the function $f(x) = \sqrt {2 - {{\sec }^{ - 1}}x} $ is